

Integral University, Lucknow University Polytechnic Study and Evaluation Scheme

Program: Diploma in Architecture

Semester-1	
------------	--

s.	Course code		Type of	hr./	Period Per week/	l sem.		Eval	uation S	cheme	Sub		Total				Attrik	outes		
No.		Course Title	Paper	L	т	P/ST	ст	ТА	Total	ESE	Total	Credit	Credits	Employat ility	Entrepre neurship	Skill Develop ment	Gender Equality	Environment & Sustainability	Human Value	Professional Ethics
THE	ORIES																			
1	DMA-101	Applied Mathematics-I	Core	03	01	00	40	20	60	40	100	3:1:0	4	Y		Y				
2	DPH-101	Applied Physics (A)	Core	03	01	00	40	20	60	40	100	3:1:0	4	Y	Y	Y		Y		
3	DCH-101	Applied Chemistry (A)	Core	03	01	00	40	20	60	40	100	3:1:0	4	Y	Y	Y		Y		
4	DAR-101	Technical Drawing-I	Core	03	01	00	40	20	60	40	100	3:1:0	4	Y	Y	Y		Y		
5	DAR-102	Building Materials	Core	03	01	00	40	20	60	40	100	1:3:0	4	Y	Y	Y		Y		
6	DEE-101	Basic Electrical Engineering-I	Core	03	01	00	40	20	60	40	100	3:1:0	4	Y		Y				
1	DCH-151	Applied Chemistry Lab	Core	00	00	02	40	20	60	40	100	0:0:1	1	Y	Y	Y		Y		
2	DAR-152	Building Materials Lab	Core	00	00	02	40	20	60	40	100	0:0:1	1	Y	Y	Y		Y		
3	DEE-151	Basic Electrical Engineering-I Lab	Core	00	00	02	40	20	60	40	100	0:0:1.5	1.5	Y		Y				
4	DCS-151	Computer Application Lab	Core	01	00	02	40	20	60	40	100	1:0:1	2	Y	Y	Y				
5	GP-151	General Proficiency				_	_	_	60	_	60								Y	Y
Tota	1			19	06	08	400	200	660	400	1060		29.5							

Effective from Se	Effective from Session: 2024-25												
Course Code	DMA-101	Title of the Course	APPLIED MATHEMATICS-I	L	Т	Р	С						
Year	IST	Semester	IST	03	01	00	-						
Pre-Requisite	DMA-101	Co-requisite	NA										
	To know the basic	concepts of Mather	natics with their Applications in Engineering.										
Course													
Objectives													

Course	Outcomes
CO1	Arithmetic Progression and Geometric Progression can be applied in real life by analyzing a certain pattern that we
	see in our daily life.
CO2	Trigonometry is widely used in several fields. Some of it's uses are Measuring heights and distances, in construction
	and architecture, flight engineering, marine biology, application of Physics, electrical engineering, manufacturing
	industry, gaming industry.
CO3	The concept of Complex Number is used in the field of Computer Science. It is also used in coding and
	programming.
CO4	Here students are getting the knowledge of Graphs, continuity, and differentiation by which they will be able to find
	areas of any surface.
CO5	By getting full knowledge of Tangent and normal students will be able to use it in daily lives and further studies in
	Architecture Engineering, Civil Engineering etc.

Unit	Title of	the Unit		Contact	Mapped
No.				Hrs.	СО
	a	Series	Series: Arithmetical Progression: n th term of AP, Sum of 'n' terms, Arithmetic Mean		
1	ii)	Binomial Theorem	Geometrical Progression: n th term of GP, Sum of 'n' terms& infinite terms, Geometric Mean.	08	1
	iii)	Determinan	Binomial theorem:		
	,	ts	Definition of factorial notation, permutation and combination, Binomial theorem for positive index, negative and fractional index (without proof), Application of Binomial theorem. Determinants:		
			Definition, expansion and elementary properties of determinant of order 2 and 3. Solution of system of linear equations, Consistency of equations, Cramer's rules.		
	i)	Trigonom etrv	Trigonometry: Relation between sides and angles of triangles: Simple cases only.	07	
2	ii)	Vector Algebra	Vector Algebra: Dot and Cross product, Scalar and vector triple product.		2
	i)	Complex	Complex Number: Definition of imaginary number, complex number & its conjugate.	08	3
3	Numbe	r	Algebra of complex number (equality, addition, subtraction, multiplication and division). Geometrical representation of a complex number, modulus and amplitude. Polar form of a complex number		
			Square root of a complex number. De Moivre's theorem (without proof)& its application.		
			Differential Calculus - I Functions, limits, continuity: Definitions of variable, constant, intervals	09	4
4	i) Calculu	Differential s-I	(open, closed, semi-open). Definition of function, elementary methods of finding limits (right and left), elementary test for continuity and differentiability.		
			Methods of finding derivative: Fundamental rules of derivatives (Sum and Difference), Derivatives of special functions, Trigonometric functions, exponential function, Function of a function.		

Differential Calculus - II	08	5						
i) Differential Differentiation: Logarithmic differentiation, Function with respect to								
5 Calculus-II another function, Function power function, Higher order derivatives.								
Application - Finding Tangents, Normal. Maxima/Minima.								
References Books:								
1. Applied Mathematics: Kailash Sinha, Meerut publication.								
2. Applied Mathematics: P. K. Gupta, Asian Publication.								
3. Applied Mathematics: H. R. Loothara, Bharat Bharti Publication.								
4. Mathematics for Polytechnic: S.P. Deshpande, Pune Vidyarthi Griha.								
e-Learning Source:								
https://w <mark>ww.</mark> youtube.com/watch?v=syLIPtxjN0E&list=PLn78sdsv0QoXBxWmyGp5SQdg-F_AlyB05o	&pp=iAQI	3						
https://www.youtube.com/watch?v=rBNQ0r7CN2c&list=PLn78sdsv0QoXUdre4aCAobj3cxACkNeLI	L&pp=iAQ	B						

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
СО											
CO1	3	1	3		1			2	-	1	1
CO2	1	3	1	1	2			2	1	2	-
CO3		1	2	2	3			3	2	2	1
CO4	2	2	2	1				-	2	1	3
CO5	2	1	2	3	1			-	1	-	2

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

APPLIED PHYSICS-(A)

(DPH-101)

[COMMON TO ALL DIPLOMA ENGINEERING COURSES]

LTP

310

UNIT-1

Measurement:

Units and Dimensions

Fundamental and derived units:

S.I. Units and Dimensions of physical quantities, Dimensional formula and dimensional equation, Principal of homogeneity and application of homogeneity principle to:

(i) Checking the correctness of physical equations

(ii) Deriving relations among various physical quantitions,

(iii) Conversion of numerical values of physical quantities form one system of units into another, Limitations of dimensional analysis, Errors in measurement, accuracy and precision, random and systematic errors, estimation of probable errors in the result of measurement (combination of errors in addition, subtraction, multiplication and power). Significant figures and order of accuracy in respect to instruments.

Vector:

Scaler and vector quantities; Addition, Subtraction, Resolution of vector; Cartesian components of vector, Scaler and vector product of vectors.

UNIT-II

Force and Motions:

Newton's Law of Motion, Circular motion, angular velocity, angular acceleration and centripetal acceleration. Relationship between linear velocity and angular velocity, Relationship between linear acceleration and angular acceleration.

Fluid mechanics and fiction:

Surface tension, capillaries, equation of continuity, Bernoulli's theorem, stream line and turbulent flow, Reynold's number. Physical significance of friction, Advantage and disadvantage of friction and its role in every day life, Static and dynamic frictional forces, Coefficients of static and dynamic frictions and their measurement, Viscosity, Coefficients of viscosity and its determination by Stoke's method.

6

10

Work, Power and Energy:

Work done by force on bodies moving on horizontal and inclined planes in presence of frictional forces, Concept of power and its units, Calculation of power(simple cases). Concept of kinetic and potential energy, various forms of energy, conservation of energy, Force constant of spring, Potential energy of stretched spring.

Unit-III

Elasticity:

Elasticity, Stress and Strain, Hooke's law, Elastic limit, Yielding point and breaking point, Modulus of elasticity, Young's modulus, Bulk modulus and modulus of rigidity, Poisson ratio, Resilience.

Simple Harmonic Motion, Peridic Motion, Characteristics of Simple Harmonic Motion, Equation of Simple Harmonic Motion and determination of Velocity and acceleration, Graphical representation, Spring Mass system, Simple pendulum, Derivation of their periodic time, Energy conservation in Simple Harmonic Motion, Definition of free, Forced, undamped and damped vibrations, Resonance and its sharpness, Q-factor.

Unit-IV

Gas laws and specific heats of gases:

Boyle's law, Charle's law, Gay Lussac's law, Absolute temperature, Kelvin scale of temperature, General gas equation(without derivation), Molar or universal gas constant, Universal gas equation, Standard or normal temperature and pressure (N.T.P), Specific heat of gases, Relation between two specific heat, Thermodynamics variables, first law of thermodynamics(statement and equation only), Isothermal, Isobaric, Isochoric and adiabatic processes (Difference among these processes and equation of state).

Unit-V

Heat transfer and radiation:

Modes of heat transfer, Coefficient of thermal conductivity and its determination by

(i) Searle's Method for good conductors.

(ii) Lee's Method for poor conductors.

Conduction of heat through compound media, Conduction and convection, Radial flow of heat, Blackbody radiation, Stefan's law, Wein's displacement and Rayleigh- Jeans laws, Planck's law.

References:

- 1. Nootan Physics: Kumar & Mittal
- 2. Applied Physics: P.K. Gupta.
- 3. Pradeep Fundamental: Gogia & Gomber.
- 4. Applied Physics: P.S. Kushwaha.

8

8

8

DCH-101	DCH-101 Applied Chemistry (A)									
Pre-	Co-Requisite	L	Т	Р	С					
requisite										
None	None	03								
Objective	To know the bas	sic concept of C	hemistry and the	err Applications in Engineer	ng					
	Atomic Structu	ire and Classifi	cation of Eleme		08					
Basic concept o	of atomic structur	e, Matter wave	concept, Quantu	m number, Heisenberg's						
uncertainty prin	nciple, Shapes of	orbitals.								
Modern classif	ication of elemen	ts (s, p, d, and f	block elements)	, periodic properties:						
ionization pote	ntial, electro nega	ativity, electron	affinity.							
		•								
UNIT II	Chemical Bond	ling:			07					
Overview of ba	sic concept of Io	nic, Covalent &	Co-ordinate bor	nds, Hydrogen bonding,						
Valence bond t	heory, Hybridiza	tion, VSEPR the	eory, Molecular	orbital theory.						
UNIT III	Electrochemist	ry-I and Electr	ochemistry-II:		08					
Arrhenius theo	ry of electrolytic	dissociation, Tr	ansport number,	Electrolytic conductance,	{					
Ostwald dilution	on law. Concept	of acid and base	es: Arrhenius, B	ronsted and Lewis theory.						
Concept of pH	and numericals.	Buffer solution	s, Indicators, So	lubility product, Common						
ion effect with	their application.									
Redox reactior	ns, electrode pote	ential (Nernst e	quation), Electro	o-chemical cell (Galvanic						
and Electrolyti	c). EMF of a ce	ell and free ene	rgy change. Sta	ndard electrode potential,						
Electrochemica	al series and its	application. C	Chemical and e	lectrochemical theory of						
corrosion, Galv	venic Series. Prev	ention of corros	ion by various n	nethods.						
UNIT IV	Chemical Kine	tics, Catalysis a	and Solid State:		09					
Introduction, L	aw of mass action	on, order and m	olecularity of re	action. Activation energy,						
rate constants,	1st order reaction	s and 2nd order	reactions.							
Definition, Cł	naracteristics of	catalytic reac	tions, Catalytic	promoters and poison,						
autocatalysis a	nd negative cataly	vsis. Theory of c	catalysis and app	lications.						
Types of solids	s (Amorphous ar	nd Crystalline),	classification (N	Iolecular, Ionic, Covalent						
and Metallic),	Band theory of s	olids (Conducto	ors, Semiconduc	tors and Insulators), types						
of crystals, FC	C, BCC, Crystal i	mperfection.								

UNIT V	Water Treatment:	08						
Hardness of w	ater, its limits and determination of hardness of water by EDTA method.							
Softening methods (Only Soda lime, Zeolite and Ion exchange resin process).								
Disadvantages of hard water in different industries, scale and sludge formation, corrosion,								
caustic embritt	lement, priming and foaming in boilers.							
Caustic embrittlement, priming and foaming in bollers. Disinfection of Water by chloramine-T, Ozone and chlorine. Advantages and disadvantages of chlorination. Industrial waste and sewage, Municipality waste water treatment, Definition of BOD and COD. Numerical problems based on topics.								
Reference	1. Applied Chemistry: R. S. Katiyar and J. P. Chaudhary							
books:	2. Applied Chemistry: Rakesh Kapoor							
	3. Principles of general and inorganic chemistry: O. P. Tandon							
	4. Engineering Chemistry: S. Chandra							
	5. Applied Chemistry: M. Gupta							

TECHNICAL DRAWING-I (DAR-101)

	L T P 3 1 0
UNIT-I	
 (a) Printing & lettering – small & capital letters, both vertical & italics. Roman printing as per I.S. code and lettering. 	
(b) Scale construction of plane, diagonal & vernier scales & their use.	8
UNIT-II	
Plane geometry problems of lines, triangles, polygons & circles.	8
UNIT-III	
Difference & use of I angle and III angle projections I-angle orthographic proje	ections 8
UNIT-IV	
Isometric projections of simple compound solids. Isometric views of builds a column with isolated footing.	ing block, 8
UNIT-V	
Wall section through arch, door & window.	8
References :	

- 1. Engineering Drawing : ND Bhatt
- 2. Engineering Drawing : R.K. Dhawan
- 3. Engineering Drawing : B.K.Goel.

BUILDING MATERIALS (DAR-102)

L T P 3 1 0

UNIT-I

Building Stones, Bricks and Timber

Classification of rocks, selection of stones for different building works. Classification of bricks, characteristics of good bricks, size and weight of standard brick. Composition of brick earth. Introduction, classification, property and uses. Defects in timber and prevention.

8

8

UNIT-II

Lime and Cement

Use of lime, setting and hardening action of lime. Introduction, properties and uses of cement, chemical constituents of cement. Functions of ingredients of cement. Setting and hardening of cement types of cement, grading of cement. **8**

UNIT-III

Concrete

Introduction, characteristics of good concrete, classification of concrete, plain cement concrete, pre-cast concrete, general aspects and application of fly-ash.

UNIT-IV

Glass, Insulating Materials

Introduction, properties of glass, sheet glass, float glass, plate glass, bullet proof glass, fiber glass. Heat and sound insulating materials, uses of cork, slage wool, light weight concrete, aluminum foil. **8**

UNIT-V

Paints, Varnishes, Distempers and Gypsum plaster

Definition of paints, function of paints, constituents of an oil paint and their functions, characteristics of good paint. Types of paints, failure of paint, defects in painting.

Definition of varnish, functions of varnish, ingredients of varnish, characteristics of gold varnish, types of varnish, distempering process, properties of distempers, white washing, color washing and gypsum plaster.

8

References :

1.	Building Material	: Sushil Kumar
2.	Building Construction	: S.K.Sinha& J. Jha
3.	A Text Book Of Building Construction	: S.P. Arora&S.P.Sindra

Effective from Se	Iffective from Session: 2024-25											
Course Code	DEE-101	Title of the Course	BASIC ELECTRICAL ENGINEERING-I	L	Т	Р	С					
Year	First	Semester	First	3	1		-					
Pre-Requisite		Co-requisite										
Course Objectives	 Fundament Study and y 	al of current, voltage verification of electri	e and power and would be able to utilize in electricated laws and network theorems for AC & DC circu	ıl eng its.	gineer	ing.						

Course	Outcomes
CO1	Conceptualize the fundamental of current, voltage and power and would be able to utilize in electrical heating and
	mechanical work.
CO2	Study the basic laws and DC network theorem which will apply to analyze the different electrical machines and network
	problems.
CO3	Develop the concept of magnetic flux and analogy between electric and magnetic circuit used in all engineering field.
CO4	Importance of ac circuit ,power factor and resonance in RLC circuit.
CO5	To impart knowledge of poly phase system and its application eg Electrical machine.

Unit No.	Title of the Unit		Contact Hrs.	Mapped CO
Unit-I	Introduction of	Application of Electrical Engineering in different fields. Basic terminology: Current, Voltage and EMF, Resistor, Capacitor. Series and parallel combination of Resistors and Capacitors. Concept of constant voltage sources and Capacitors current acuracy currently and	8	1
	Engineering	graphical representation, characteristics of ideal and practical sources. Conversion of voltage sources into current sources and vice versa.		
Unit-II	D.C. Circuit, Lighting Schemes	KVL & KCL, Ohm's law and simple numerical problems based on it. Introduction to Thevenin, Norton and Superposition theorem. LIGHTING SCHEMES: Lux, Candela, Series and parallel connection of wiring. LAMPS: Fluorescent and Incandescent lamp construction and working.	8	2
Unit- III	Electromagnetism	Concept of magnetic flux, flux density, magnetic field intensity (formula based numerical problem). Concept of reluctance and MMF (formula based numerical problem). Analogy between electric and magnetic circuit, B – H curve, Faraday's Law of electromagnetic induction. Lenz's Law, Energy stored in inductor.	8	3
Unit-IV	A.C. circuit	Terminology: Instantaneous value, maximum value, cycle, frequency, alternating current and voltage ,different types of power (Simple numerical problem), Difference between A.C. and D.C. Concept of phase and phase difference, Phasor representation of voltage and current for inductor, capacitor and resistor. Power factor ,RLC series resonance Introduction to three phase system, Advantage of three phase over single phase system. Star and Delta connection, Relationship between phase and line value of current and voltage.	8	4
Unit-V	Electrical machine	Types of A.C. and D.C. motors, Basic principle and working of A.C. and D.C. motor. Basic principle and working of A.C. and D.C. generator. Application of A.C. and D.C. motor. Single phase transformer (Brief introduction). Brief idea about stepper motor, reluctance motor and PMDC motor.	8	5
Referen	ces Books:			-
1.	Fundamental of Elec	ctrical Engg. – Ashfaq Husain		
2.	Electrical Technolog	gy Volume-I – B.L. Thereja		
e-Learn	ing Source:			
https://n	ptel.ac.in/			
L				

PO- PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PSO1 PSO2 PSO3 PSO4

PSO													
CO													
CO1		3	2		1	1	1					2	
CO2		2	2		1				2			2	
CO3		2	2	3	2		2	2	1	2		3	
CO4		2	2			3		2				2	
CO5		2	3				2	3				2	
l-Low Cor	relation	; 2- Mod	erate Co	rrelation	i; 3- Sub	stantial (Correlati	on				 	
	Name & Sign of Program Coordinator								S	lign & Seal	l of HoD		

DCH-151/251	Applied Chemistry Lab									
Pre-requisite None	Co-Requisite None	L 00	Т 00	P 02	С					
Objective	To develop determinati	the practical kn on of hardness,	owledge for qual chloride contents	itative analysis of salt , dissolved oxygen in	s and water					
		ANY	FEN EXPERIMI	ENTS						
	To analyze inor following radica	ganic mixture for Ils	two acid and basi	c radicals from						
	A. I	Basic Radicals :								
	1	+, Sb+++,								
Exporimont 1.5	S	on ⁺⁺ , Al ⁺⁺⁺ , Fe ⁺⁺⁺ ,	, Cr ⁺⁺⁺ , Mn ⁺⁺ , Zn ⁺	+, Co++	10					
Experiment 1-5	1	Vi ⁺⁺ , Ba ⁺⁺ , Sr ⁺⁺ , C	Ca ⁺⁺ , Mg ⁺⁺		10					
	B. A	B. Acid Radicals :								
	(CO ₃ , S , SO ₃ , CH ₃ COO ⁻ , NO ₂ ⁻ ,								
	1	NO3 ⁻ , Cl ⁻ , Br ⁻ , I ⁻	, SO ₄							
Experiment 6	To determine the total hardness of water sample in terms of CaCO ₃ by									
Experiment	EDTA titration method using E Br indicator.									
Experiment 7	Determination of method.	f temporary hard	ness of water sam	ple by O-hener's	02					
Experiment 8	To determine th Mohr's methods	nt in supplied wate	er sample by using	02						
Experiment 9	Experiment 9 Determination of Dissolved oxygen (DO) in given water sample.									
Experiment 10	To determine th	e strength of give	en HCl solution by	v NaOH solution using	02					
	pH meter									
Experiment 11	To determine the sample of Bleace	he percentage of a hing powder.	available Chlorine	in the supplied	02					

BUILDING MATERIALS LAB (DAR-152)

L T P 0 0 2

- 1. Identification of different types of stones and aggregates (visual identification).
- 2. Identification of timbers: teak, sal, chir, shisum, siras, deodar, kail and mango. (visual identification)
- 3. To conduct field tests of cement.
- 4. To determine normal consistency of cement.
- 5. To determine setting time (initial and final) of cement.
- 6. To determine fineness of given sample of cement.
- 7. To determine compressive strength of bricks.
- 8. To determine water absorption of bricks
- 9. To determine soundness of cement.
- 10. To identify hydraulic & fat lime.

Effective from Session: 2024-25											
Course Code	DEE-151	Title of the Course	BASIC ELECTRICAL ENGINEERING LAB-I	L	т	Р	С				
Year	First	Semester	First			2	-				
Pre-Requisite		Co-requisite									
Course Objectives	 Different electrical measuring instruments (Analog and Digital) Study and verification of electrical laws and network theorems. 										

Course	Outcomes
CO1	Familiarization of different electrical measuring instruments (Analog and Digital)
CO2	Verifying laws of series and parallel connection of circuit elements.
CO3	Verifying different DC network theorems and electrical machines.

Experiment No.	Experiment	Contact Hrs.	Mapped CO
Experiment-1	Use of ammeter, voltmeter and multimeter	2	1
Experiment-2	To verify the laws of series and parallel connections of resistance.	2	2
Experiment-3	To verify the laws of series and parallel connections of capacitance.	2	2
Experiment-4	Verification of Ohm's law.	2	2
Experiment-5	To verify Kirchhoff's first laws: The algebric sum of the currents at a junction is zero.	2	2
Experiment-6	To verify Kirchhoff's second laws: The algebric sum e.m.f. in any closed circuit is equal to the algebric sum of IR products (drops) in that circuit.	2	2
Experiment-7	To measure the resistance an ammeter and a voltmeter and to conclude that ammeter has very low resistance whereas voltmeter has very high resistance.	2	2
Experiment-8	To verify Thevenin's theorems.	2	3
Experiment-9	Study of 1-phase Energy meter.	2	3
Experiment-10	Study of running and reversing of a 3-phase Induction motor.	2	3
Experiment-11	Measurement of Efficiency of a 1- phase transformer by load test.	2	3
Experiment-12	Study of phenomenon of resonance in RLC series circuit.	2	3
Experiment-13	Practice in making different types of wiring and control of lamp with one or many switches.	2	2

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
PSO														
СО														
CO1			2					3	1	3			2	
CO2		1	3		2				1				2	
CO3		1	3		2				1				3	

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

COMPUTER APPLICATION LAB

(DCS-151)

L T P 102

- 1. Introduction of computer types, generation, Application, characteristic & Memory.
- 2. Introduction and practice of Ms-Office package (Ms-Word, Ms- Excel, and Ms- Power point & Ms-Access).
- 3. Introduction & Practice of Internet and e-mail.
- 4. Programming of 'C' history of character set, variables, keywords, token data types input and output function.
- 5. Introduction of Decision control statement- if, if- else, nester if statement and switch case.
- 6. Programming practice of if, if else, nested if statement and switch case.
- 7. Loops- while loop, do- while loop, for loop, break and continuous statements.
- 8. Programming practice of while loop, do- while loop, for loop, break and continuous statements.
- 9. Array Declaration, initialization of one and two dimensional array.
- 10. Programming practice on array.

Reference:

- 1. Computer fundamental- Sinha & Sinha
- 2. Computer Basics & 'C'- V. Rajaraman
- 3. Office 2007 Ruthosky, Seguim, Ruthosky
- 4. Programming in ANSI- E Balagurusamy